Reactive oxygen species and the control of vascular function.

نویسنده

  • Michael S Wolin
چکیده

This article summarizes perspectives on how reactive oxygen species (ROS) and redox signaling mechanisms participate in regulating vascular smooth muscle function that have resulted from our studies over the past 25 years in areas including oxygen sensing and the regulation of cGMP production by soluble guanylate cyclase (sGC) that were presented in the Robert M. Berne Distinguished Lectureship at the 2008 Experimental Biology Meeting. It considers mechanisms controlling the activity of sources of ROS including Nox oxidases and mitochondria by physiological stimuli, vascular diseases processes, and metabolic mechanisms linked to NAD(P)H redox and hypoxia. Metabolic interactions of individual ROS such as hydrogen peroxide with cellular peroxide metabolizing enzymes are viewed as some of the most sensitive ways of influencing cellular signaling systems. The control of cytosolic NADPH redox also seems to be a major contributor to bovine coronary arterial relaxation to hypoxia, where its oxidation functions to coordinate the lowering of intracellular calcium, whereas increased cytosolic NADPH generation in pulmonary arteries appears to maintain elevated Nox oxidase activity, and relaxation to hydrogen peroxide, which is attenuated by hypoxia. The sensitivity of sGC to nitric oxide seems to be regulated by thiol and heme redox systems controlled by cytosolic NADPH. Heme biosynthesis and metabolism are also important factors regulating the sGC system. The signaling pathways controlling oxidases and their colocalization with redox-regulated systems enables selective activation of numerous regulatory mechanisms influencing vascular function in physiological processes and the progression of aging-associated vascular diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Angiotensin II in Reactive Oxygen Species Production and Modulatory Role of Nitric Oxide (NO) in Vessel Responses to AngII in Acute Joint Inflammation in the Rabbit

Introduction: It has been approved that in most tissues NO production increases during acute inflammation and Angiotensin II has a role in production of reactive oxygen species (ROS). As regulation of joint blood flow (JBF) is important in this situation, this study was performed to investigate the interaction of local Ang II and ROS production and the modulatory role of NO on regulation of JBF...

متن کامل

Effect of Reactive Oxygen Species on Germination and Lipid Proxidation in Sunflower Seeds

Reactive oxygen species cause to release of dormancy in many plants such as sunflower seeds. This study investigated in order to evaluation role of reactive oxygen species germination and lipid proxidation in sunflower seeds. This study was performed in two separate experiments, each in a completely randomized design with factorial design with four replications.  In both experiments, uses from ...

متن کامل

Effect of Reactive Oxygen Species on Germination and Lipid Proxidation in Sunflower Seeds

Reactive oxygen species cause to release of dormancy in many plants such as sunflower seeds. This study investigated in order to evaluation role of reactive oxygen species germination and lipid proxidation in sunflower seeds. This study was performed in two separate experiments, each in a completely randomized design with factorial design with four replications.  In both experiments, uses from ...

متن کامل

The reduction of aorta histopathological images through inhibition of reactive oxygen species formation in hypercholesterolemia rattus norvegicus treated with polysaccharide peptide of Ganoderma lucidum

Objective(s):Atherosclerosis is chronic inflammatory process triggered by oxidative stress. Oxidative stress can increase hydrogen peroxide (H2O2)level, which induce atherosclerosis through the processes such as formation of perivascular adipose tissue (PVAT), foam cells, and atherosclerotic plaque. Antioxidant is needed to control negative effects of oxidative stress. One source of antioxidant...

متن کامل

نقش استرس اکسیداتیو در تکثیر بی‌رویه و مرگ سلولی

Abstract During normal cellular activities Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are produced. In addition to beneficial functions they play a critical role in cell death and prevent apoptosis. Every cell is equipped with an extensive antioxidant defense system to combat the excessive production of active radicals. Oxidative stress occurs with destruction of cellu...

متن کامل

Reactive Oxygen Species and Antioxidant in Seminal Plasma and Their Impact on Male Fertility

Spermatozoa generate reactive oxygen species (ROS) in physiological amounts which play a role in sperm functions during sperm capacitation acrosome reaction (AR) and oocyte fusion. In addition damaged sperm are likely to be the source of ROS. The most important ROS produced by human sperm are hydrogen peroxide superoxide anion and hydroxyl radicals. Besides human seminal plasma and sperm posses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 296 3  شماره 

صفحات  -

تاریخ انتشار 2009